Energy-efficient Management of Heterogeneous Wireless Sensor Networks

Gerald Wagenknecht
Universität Bern
Agenda

> Introduction
> Key issues
> Key concepts
> WSN scenario
> Working packages
> First steps & ideas
> Discussion
Introduction

> Wireless sensor nodes with limited resources
 — energy / battery
 — processing power, RAM
 — network bandwidth

> Characteristics of WSNs
 — long-term deployment cycles
 — heterogeneous nodes’ hardware base

> Node maintenance tasks
 — (re)configuration
 — (re)programming
 — monitoring
 — planning of physical maintenance tasks
Key issues

> WSN management framework
 — support individual node management
 — distribute OS / application level code
 — exchange management information

> Efficient & reliable communication mechanisms
 — unicast
 — multicast
 — broadcast

> Challenging problems
 — wireless transmission is unreliable
 — sensor nodes are unreliable
 — topology might change frequently
Key concepts

- Packet caching
- Local repair
- Efficient flow & congestion control mechanisms
- Compression schemes
- Acknowledgement suppression
WSN scenario

Typical WSN scenario
- management station
- base station
- management nodes
- sensor nodes
Working Packages – WP1 (1)

> Management and Code Distribution for Wireless Sensor Nodes

— Defines overall wireless sensor network management and code distribution framework.

— Include following tasks:
 – WSN Management Framework (Apr’07)
 – WSN Management Architecture Implementation (Jun’07)
Working Packages – WP1 (2)

> WSN Management Framework

— Support of following management operations:
 – dissemination of management information to all sensor nodes (using broadcast)
 – installation and run-time modifications to a group of nodes (using multicast)
 – configuration and management individual sensor node parameters (using unicast)

— Specification of:
 – management / code distribution operations
 – supporting protocols
Working Packages – WP1 (3)

> WSN Management Architecture Implementation

— Identification of:
 - appropriate sensor node platforms
 - appropriate operating system and middleware components

— Design & implementation of:
 - basic management station
 - management node middleware
 - sensor node middleware
Working Packages – WP2 (1)

> Reliable Communication Mechanisms for Wireless Sensor Networks

— Developing the required reliable unicast, multicast, and broadcast mechanisms

— Include the following sub packages:
 - Reliable Point-to-Point Transport (Aug’07)
 - Reliable Multicast Transport (Mar’08)
 - Reliable Broadcast (Mar’08)
Working Packages – WP2 (2)

> Reliable Point-to-Point Transport

— TCP Support for Sensor Networks (TSS)

— Includes special functionality:
 - caching
 - local retransmission
 - congestion control
 - compression schemes
 - acknowledgement suppression

— Potential improvements:
 - delayed acknowledgement
 - reducing transmission by combining TCP data & TCP ack
 - header compression
Working Packages – WP2 (3)

> Reliable Multicast Transport

— Development of a reliable multicast communication mechanism
 – use multicast routing protocol for wireless sensor networks
 – add reliability mechanisms (e.g. Scalable Reliable Multicast)

— Development of a reliable overlay multicast scheme
 – application level multicast
 – based on partially meshed overlay network
 – might use TCP connections between nodes of a group

— Multicast routing schemes vs application level multicast
 – evaluation and comparison of schemes
Reliable Broadcast

- Development of a reliable broadcast communication mechanism

- Use Dynamic Delayed Broadcast (DDB)
 - improves delivery ratio of broadcasts

- Need of additional transport mechanisms on the top of the broadcast routing protocol
 - to support WSN management scenario

- Evaluation and optimization
Working Packages – WP3 (1)

> Implementation and Integration

— Integration of the protocol mechanisms with the implementation of the WSN management framework

— Development of a demonstrator

— Include following tasks:
 – Implementation of management and code distribution operations (Oct’08)
 – Implementation of reliable unicast, multicast, and broadcast protocols (Oct’08)
 – Integration of management and code distribution operations, reliable unicast, multicast, and broadcast protocols as well as selected sensor node platform and middleware (Dec’08)
First steps & ideas

> Sensor nodes bought
 — TmoteSky nodes & TmoteConnect

> Brainstorming “Schlagworte”
 — Thought about the management architecture
 — Dynamic change of sensor nodes to management nodes
 — Combining mesh networks with sensor networks
 — …
Discussion

> Questions and ideas are welcome …