RAN platform for LTE research

Desislava Dimitrova
Denis Rosario
Outline

- MCN contribution
- LTE Overview
- OpenEPC – LTE core solution
- VirtualRAN – LTE RAN solution
- Load Balancing
- Conclusion
Mobile Cloud Networking
Mobile Cloud Networking

- Mobile Cloud Networking has the vision to
 - develop a novel cloud-based network architecture for mobile communication systems;
 - extend cloud computing so as to support on-demand and elastic provisioning of novel mobile services.

- The MCN approach requires
 - extensions towards higher decentralisation & scale based on load;
 - composition & operation of virtual end-to-end infrastructure;
 - management of physical infrastructure by different network providers.

- University of Bern is involved in:
 - WP3 – Wireless cloud, Radio Access Network
 - WP4 – Mobility management and prediction
 - WP5 – Distributed content management
Radio Access Network experimentation platform

What do we want to have?
- Platform to test diversity of mechanisms for mobility management, resource management, content distribution, QoS monitoring, etc.
- Both performance of core and radio access networks should be observed

What is already there?
- Core functionality – OpenEPC
- Radio access – several LTE simulators for ns3 and OPNET

What can we do?
- Interface a simulated radio access model with core testing platform
- Introduce emulation to existing simulated radio access models – user equipment vs base stations, available hardware
Load balancing in the RAN

- between radio resources & radio management (base stations)
- based on decentralised and self-organising mechanisms that can
 - identify available spectrum (of the same and different systems, e.g., LTE and WiFi) and temporal and geographical traffic variations
 - distribute resources by multi-technology BBU-pools over incoming service requests
LTE Overview
3GPP Evolved Packet System (EPS)
LTE Overview

- EPS realises a separation between E-UTRAN and EPC
- Target
 - packet optimized system with higher data rates & lower latency
 - support for multiple radio access technologies
- Functions separation

<table>
<thead>
<tr>
<th>Evolved UTRAN (E-UTRAN)</th>
<th>Evolved Packet Core (EPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eNodeB (eNB)</td>
<td>Mobility Management Entity (MME)</td>
</tr>
<tr>
<td>Serving Gateway (S-Gw)</td>
<td>Packet Data Network (PDN-Gw)</td>
</tr>
<tr>
<td>intra-3GPP mobility</td>
<td>IP address allocation, Packet filtering Inter-3GPP mobility</td>
</tr>
</tbody>
</table>
LTE Overview

- Radio Access Network – the protocol stack
 - Independent RAN protocol stack
 - Independent core stack (towards MME and SGW)
 - eNodeB does translation
LTE Overview

- Radio Access Network – E-UTRAN architecture
 - Distributed approach towards base stations
 - eNodeB can consist of
 - A Base Band Unit (BBU)
 - One or more Remote Radio Heads (RRH)
 - Increased radio resource flexibility
OpenEPC
OpenEPC

- Core network testing framework
 - All core functionalities are implemented

OpenEPC integrates with
- 3GPP networks
 - LTE – third party eNodeB
 - HSPA/UMTS – third party NodeB
 - EDGE/GPRS – third party BTS/BSC

- Trusted non-3GPP (WiMAX)
 - AAA and packet network connectivity

- Untrusted non-3GPP (WiFi)
 - AAA and packet network connectivity

Figure is courtesy to Fraunhofer FOKUS
Emulation of the 3GPP radio accesses

- Operates without RAN equipment using public spectrum (WiFi)
- eNodeB behaves as an eNodeB towards OpenEPC (implements NAS)
- eNodeB behaves as an access point towards the UE

To do

- None of the RAN protocols are yet implemented
- No operability with existing radio access simulators is supported

Figure is courtesy to Fraunhofer FOKUS
VirtualRAN
Available simulation models

- **ns3 LENA**
 - LTE Specialized Model
 - open source
 - Most functionalities are validated
 - Includes
 - PHY layer functionality (outdoor channel models, CQI, BLER modulation curves, ACM)
 - MAC layer functionality (buffer status, DL scheduling, channel mapping)
 - Radio Resource Control (RRC)
 - X2 implementation supporting handover
Available simulation models

- **OPNET**
 - LTE Specialized Model
 - OPNET Modeler® Wireless Suite
 - OPNET Modeler® Wireless Suite for Defense
 - Includes
 - PHY layer functionality (interference and path loss models, CQI, BLER modulation curves)
 - MAC layer functionality (buffer status, scheduling, channel mapping)
 - NAS (admission control, session and location management)
VirtualRAN

- Objective
 - Support the development and testing of mechanisms for the LTE RAN (inter-related to core functionality)

- Requirements
 - Represent the behaviour of the radio channel
 - Represent the behaviour of the communicating parties – mobile users and eNodeBs
 - Represent interaction with the core functionalities

- Approaches
 - Simulation of both radio channel and communicating parties
 - Emulation of communicating parties
 - For both cases, interaction with the core should be possible
VirtualRAN

Development directions

Simulation model

Phase 1
- Application
- Simulated UE

Phase 2a
- Application
- Virtual UE

Phase 2b
- Application
- Real UE

Radio Channel / PHY

Simulated eNodeB

Interfacing with OpenEPC
To do

Simulation
- Determine best LTE simulation model (LENA favorite)
- Familiarize in detail with the model’s modules
- Identify missing functionalities for implementation, e.g., uplink scheduling, radio propagation models

Emulation
- Study emulation support in each simulator framework
- Introduce emulation to the simulation model

Interface with OpenEPC
- Appropriately passing of RAN information
Load Balancing
Load balancing

- **Advantages**
 - Higher flexibility and optimisation of operation
 - Global best-service offer to users

- **Disadvantages**
 - Increased complexity of the management
 - Operators/network owners need to cooperate

- **Challenges**
 - The current dedicated radio spectrum needs to transform to a shared one
 - Radio resources need to be appropriately represented for a global management scheme
 - Several strategies towards resource sharing may exist
Load balancing

- Radio Access Network (RAN)
 - Load balancing between radio bearers
 - In the scope of a single eNodeB
 - Performed by the eNodeB scheduling mechanism
 - May require intra-eNodeB handover
 - Load balancing between eNodeBs
 - In the scope of different eNodeBs
 - Performed with the MME and the eNodeB participation
 - May require inter-eNodeB handover
Load balancing

- Radio Access Network (RAN)
- Load balancing between technologies – managed by MME
Load balancing

- Sharing resources among technologies and operators may enable more advanced mechanisms but requires appropriate algorithms

To do
- Complete state of the art (cooperation with INOV)
- Identify most relevant current shortcomings
- Investigate on most promising approaches
Thank you
Available simulation models

- **OPNET**
 - Media Access Control Layer (MAC)
 - RRC procedures for radio bearer management
 - EPS bearer to radio bearer mapping
 - RLC TM, UM, and AM
 - Transport channels: DL-SCH, UL-SCH, L1/L2 control channel
 - Random access
 - Scheduling requests
 - Channel dependent scheduling
 - Buffer status reporting
 - Rate adaptation
 - FDD and TDD operation
Available simulation models

- **OPNET**
 - **Non-Access Stratum (NAS) Layer**
 - Location management: LTE_ACTIVE state, IN_SYNC sub-state
 - Session management: EPS bearer handling
 - Admission control
 - PDCP
 - Single-cell downlink broadcast
Available simulation models

- **OPNET**
 - **Physical Layer (PHY)**
 - OFDMA for downlink/SC-FDMA for uplink
 - Physical channels: PDDCH, PUCCH, PHICH, PDSCH, PUSCH, PRACH
 - BLER modulation curves with turbo coding and circular buffer rate matching algorithm: for each modulation and coding scheme (MCS)
 - Multiple path loss models
 - Multipath channel model for uplink and downlink
 - Intra- and inter-cell interference
 - HARQ: Type-II Incremental Redundancy
 - Channel Quality Indicator (CQI)
 - MIMO: Space Time Coding
Available simulation models

- **OPNET**

 - **General features**

 - Nodes: UE (end-node or router), eNodeB, (single-or multi-sector), EPC

 - Handover mechanisms for mobility (Intra-E-UTRAN)
 - Inter- and intra-frequency
 - With S1 or X2 interfaces

 - GGSN services by EPC to legacy SGSNs

 - MBMS (Multimedia Broadcast Multicast Service)

 - Initial cell selection by UEs

 - Efficiency mode to disable PHY layer

 - Energy consumption model

 - Dynamic failure/recovery of base stations