Application Layer Multicast

RVS Seminar HS08, Oct 22nd, 2008

Marc Brogle
Overview

> Multicasting
 — Unicast vs. Multicast and Link costs

> IP Multicast vs. Application Layer Multicast
 — Trees among routers vs. among end systems
 — Efficiency of IP Multicast vs. ALM
 — Deployment issues

> ALM protocol design
 — Application domain
 — Deployment level
 — Group management
 — Routing mechanisms

> Comparison & Conclusion
Multicasting

> Multicast is more efficient than multiple unicast connections

> Multicast example scenario considering link costs (RTT, $, ...)

topology with costs

multicast tree

[1]
IP Multicast vs. Application Layer Multicast: Trees among Routers vs. among End Systems

> IP Multicast [2] optimal regarding tree structure (routers in tree)
> ALM has overhead due to tree built among end systems

all figures from [1]
IP Multicast vs. Application Layer Multicast: Efficiency of IP Multicast vs. ALM

- IP Multicast is efficient but needs deployment of routers
- ALM hosts have little information about underlaying network
- ALM tree building can be optimized (link / tree stretch) to incur only low penalties compared to IP Multicast [3]

topology

IP Multicast tree

ALM tree

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>20</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

total costs = 37

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>20</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

total costs = 39

all figures from [1]
IP Multicast vs. Application Layer Multicast: Deployment issues

> No widespread deployment of IP Multicast in the Internet

> Technical, administrative and business related issues [4]
 — IP Multicast capable routers at all levels of network required
 — Tendency to install simple, unintelligent (= very fast) routers
 — Managing and security issues (flooding attacks)
 — Billing and charging

> MBONE [5] project (mid 90’s)
 — Unicast connections between (IP Multicast) subnetworks
 — IP tunneling between these “IP Multicast islands”
 — Problems: receiver authentication, group management, flooding
 — Static setup of unicast tunnels = growth problem
 — Not available for home Internet users through their ISPs
Protocol design depends on the application domain [4]

- Audio/video streaming
 - single source
 - large number of receivers
- Audio/video conferencing
 - small to medium group size
 - interactive multiparty conferencing session
 - multiple sources
- Generic multicast service
 - based on specific metrics (delay, bandwidth, fan-out, ...)
- Reliable data broadcast and file transfer
 - large data sets (distributed DB, file sharing)
 - bandwidth as only metric

Typically focus on optimizing for a single application domain
Proxy-based (infrastructure-level) ALM:
- requires dedicated server/proxies in the Internet
- creates overlay only among proxies
- provides a transparent multicast service to end-users (IP Multicast)
- is typically generic multicast service
- may expect a service charge

End-system ALM:
- assumes only unicast infrastructure
- expects users (end-systems) to take part in the forwarding
- is “free” as of peer-to-peer nature (independent and cost-free)
- enjoys more flexibility, optimized for specific application domains
ALM Protocol Design
Group Management

> Key decisions regarding group / node management
 — How to find out about / join / leave groups?
 — Sending allowed when not joined?
 — Centralized or decentralized management?
 — Support existing IP Multicast Islands?
 — Support refinement during group life-time?
 — Use mesh-first or tree-first approach?

> Typically ALM use
 — Rendez-vous points for discovery
 — Source-specific trees for video streaming 1:n
 — Mesh-first constructed shared trees for conferencing
ALM Protocol Design
Group Management

> Mesh-first
 — builds P2P “mesh” without the multicast tree in mind
 — limits multicast tree quality (depends on quality of the mesh)
 — is more robust and better for multi-source applications

> Tree-first
 — builds the multicast tree directly without any mesh
 — gives direct control over the tree (e.g. control fan-out)
 — changes cause change for all descendants in tree
 — has lower communication overhead (simpler)

> Source-specific trees vs. shared trees
 — Two conflicting design goals:
 - minimize individual path length (hops/end-to-end delay)
 - minimize \sum hops (cumulative end-to-end delay) to all destinations
ALM Protocol Design
Group Management

> Source-specific trees
 — optimizes the tree for a single source
 — has a limited efficiency for multiple sources on same tree

> Shared trees
 — supports efficiently multiparty-communications
 — has better maintenance costs than source-specific trees

> Distributed vs. centralized (balance simplicity vs. robustness)
 — Distribute workload for tree maintenance among root nodes
 (robust, synchronization issues, large-scale applications)
 — Central group management for small-scale applications
 (single-point of failure, simple & easy deployment)

> Refinement: optimize tree performance because of new joins and leaves (can cause interruptions & stability issues)
ALM Protocol Design
Routing Mechanism

> Shortest path trees: use RTT measurements to build the shortest path tree from source to end hosts

> Minimum spanning trees: construct “low cost” trees

> Clustering structures: build hierarchical clusters

> Peer-to-peer structures: typically use reverse-path forwarding
Comparison & Conclusion

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing</td>
<td>Peer-to-peer</td>
<td>clustering</td>
<td>Peer-to-peer</td>
<td>Peer-to-peer</td>
</tr>
<tr>
<td></td>
<td>structure</td>
<td>structure</td>
<td>structure</td>
<td>structure</td>
</tr>
<tr>
<td>Refinement</td>
<td>Yes (hop delay)</td>
<td>Periodically</td>
<td>No</td>
<td>Periodically</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(reclustering)</td>
<td></td>
<td>(fix fingers)</td>
</tr>
<tr>
<td>Out-degree</td>
<td>typical bounds</td>
<td>fixed bounds</td>
<td>none (~N, ~d, ~t)</td>
<td>typical bounds</td>
</tr>
<tr>
<td>constrains</td>
<td>(~N)</td>
<td></td>
<td></td>
<td>(~N)</td>
</tr>
<tr>
<td>Application</td>
<td>generic multicast</td>
<td>“single source”</td>
<td>“generic multicast”</td>
<td>“generic multicast”</td>
</tr>
<tr>
<td>domain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree-first /</td>
<td>mesh-first</td>
<td>“mesh-first”</td>
<td>mesh (duplicates)</td>
<td>mesh-first</td>
</tr>
<tr>
<td>mesh-first</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> common: distributed, hop delay metric, source-specific trees
References

References

Questions

...and so, in conclusion, the proposed method...

THANK GOODNESS, ALMOST OVER... HOPEFULLY I DIDN'T BORE THEM TO TEARS.

...thank you, you've been a great audience...

OK, THE OBLIGATORY CALL FOR QUESTIONS AND I AM DONE...

...tions?

OR NOT.

www.phdcomics.com