Multicast in Wireless Sensor Networks

Gerald Wagenknecht
University of Berne
Agenda

> Motivation

> Overview over multicast

> Existing multicast approaches for wireless ad hoc networks and WSNs

> Ideas of a reliable multicast protocol for WSNs

> Discussion
Motivation

> Scenario: code update of 3 selected nodes
Multicast Overview (1)

> What means (IP-)Multicast?

> Main aspects:
 — Joining/Leaving a multicast group (IGMP)
 — Addressing (224.xxx.xxx.xxx)
 — Data forwarding (flooding, spanning tree, source-based tree, shared tree)
 — Building multicast trees (reverse path forwarding)
 — Routing protocols in transport layer
Multicast Overview (2)

> Multicast routing protocols:

- Distance Vector Multicast Routing (DVMRP)
- Protocol Independent Multicast (PIM)
 - Dense Mode (PIM-DM)
 - Sparse Mode (PIM-SM)
- Overlay Multicast
Multicast Overview (3)

> Characteristic of Multicast in WSNs
 - Source-based-trees
 - Joining/leaving?
 - Sender decides who receives the data
 - Broadcast medium
 - Multicast addresses
 - Multiple paths from source to sender (with different link quality)
 - Bandwidth, memory, energy (less control messages)
 - Node mobility?
Existing multicast approaches (1)

MAODV

- Multicast Ad hoc On-demand Distance Vector Routing Protocol (MAODV) [1]
 - Source-tree-based
 - Joining via RREQ/RREP
 - Forwarder nodes update the routing table
 - Activation of the tree via MACT
Existing multicast approaches (2)

VLM²

 – Adressing
 – 8bit ID for nodes and groups
 – Joining via SUBSCRIBE
 – Routing
 – Node-to-base unicast Routing
 – Base-to-node multicast routing
Existing multicast approaches (3)

BAM

 - S-BAM

![Diagram of BAM multicast](image-url)
Existing multicast approaches (4)

BAM

> BAM: Branch Aggregation Multicast for Wireless Sensor Networks [3]
 - M-BAM
Existing multicast approaches (5)

ADMR

 - Joining: sender-initiated and receiver-initiated
 - ROUTE_DISCOVERY / RECEIVER_JOIN (controlled flooding)
 - Building trees based on different metrics (hop-count, LQI)
 - Node mobility: route discovery every 15s
Existing multicast approaches (6)

Geographic Routing

- **GMP**: Geographic Multicast Routing Protocol [5]
 - Main focus on tree building
 - Each transmitting node builds Euclidian Steiner Trees
 - Used on each routing step

- **GMR**: Geographic Multicast Routing for WSNs [6]
 - Based on geographic unicast routing protocols
 - Uses a cost-based neighbor selection on each routing step

- Both approaches use local information, prevent broadcast or flooding to discover routes
Existing multicast approaches (7)

 - propose using of IP in WSNs
 - uses Contiki with uIP
 - but using of IPv6 is proposed???
 - MAODV over 802.15.4 implementation in NS2
Ideas (1)

> Multicast Overlay

- over TCP/IP (resp. TSS) at application level
- Source decides which node joins the group
- Tree building based on unicast routing tables
- Data forwarding via unicast connections between source, forwarders and receivers
- Multicast reliability based on unicast reliability
Ideas (2)

> „Real“ Multicast

- Design of a reliable multicast protocol affects MAC-, Internet-, and transport-layer
 - MAC protocol with multicast functionality
 - Using of IGMP for joining/leaving
 - Using of IP multicast addresses
 - Tree building (source-based-trees)

 based on unicast routing tables
Ideas (3)

- Building multicast trees / routing tables
 - Which nodes within a path should be a forwarder?
 - Energy-efficiency: one big hop vs. more small hops
 - affects also unicast routing tables
References (1)

References (2)

Discussion

> Questions and ideas are welcome …