RVS Seminar
Adaptive Transmission Over Multipaths

ATOM

Thomas Staub
University of Bern, Switzerland
Outline

> Motivation
> Key idea
> Related work
 — Multi-path routing protocols
 — Routing metrics
 — Multi-stream coding
> Adaptive Transport Over Multipaths (ATOM)
> Next steps
> Conclusions
> Questions
Wireless Mesh Network (WMN)
WMN for Real Time Applications

> WMN

- Robust, redundant communication infrastructure
- Communication possibilities even in situations where certain systems (e.g. GSM) are overloaded
 → VoIP + video conferencing during critical situations (emergency communications)

- Disadvantage
 - Route quality may unpredictable vary because of unreliable / erroneous wireless medium
 → route breaks, high delays

 ➡ Deployment of real-time applications like VoIP (short delays, moderate packet loss) is a challenging task

➡ Possible solution: using path diversity (multi-path routing) and multi-stream coding
Key Idea: Multi-Path Routing and Multi-stream Coding

> Transmission over multiple paths can compensate the dynamic and unpredictable nature of the wireless medium
 — Different paths have different error characteristics, different delays etc.
> Encoding in multiple streams
> Individual streams are transmitted over independent paths
Path Diversity: Multi-Path Routing Protocols

> Based on AODV [1]:
 - AOMDV [2]
 - AODVM [3]
 - Node-Disjoint Multipath Routing (NDMR) [4]
 - Similar Node-Disjoint Multipath Routing (SNDMR) [5]
 - AODV-BR [6]
 - MP-AOMDV [7]

> Based on DSR [8]:
 - Split Multi-Path Routing (SMR) [9]
 - Multi-Path DSR (MP-DSR) [10]
 - Multipath Source Routing (MSR) [11]

> CacHing And Multipath routing Protocol (CHAMP) [12]

> Multipath Associativity Based Routing (MPABR) [13]
Routing Metrics

> Most existing routing protocols base on simple hop count metric
> Problem: Incorrect assumption that links either work or not
 - packet loss ratio
 - bandwidth (transmission rates not considered)
 - (self-)interference (inter-flow, intra-flow)
 - varying delays for different links

> Other metrics
 - Expected transmission count (ETX) [14]
 - Expected transmission time (ETT) [15]
 - Weighted Cumulative Expected Transmission Time (WCETT) [15]
 - Metric of Interference and Channel-Switching (MIC) [16]
 - iAWARE [17]
Multipath Routing with Enhanced Metrics

> Multiple Paths

 — Minimized inter-flow interference between the selected paths

 — „Inter-Path“ interference has to be considered during path setup

 - adds neighboring links with possible interference, even normally there is no traffic on the links (planned part of a multi-path route!)

 — node-disjoint paths (?)
Coding: Layered Coding

- Layered Coding
 - Lena coded with DCT (Discrete Cosinus Transformation)

- Base layer + multiple enhancement layers
- Base layer is required for reconstruction!
Coding: Multi-Description Coding (MDC)

> Each stream is sufficient for an acceptable quality.
> Multiple streams enhance the quality.
Coding: MDC Lena Example

> Input image

> Encoding with 4 MDC streams
Coding: MDC Lena Example

> Input image

![Input image](image1)

Output image

![Output image](image2)

1 stream received

> Encoding with 4 MDC streams

![Encoding with 4 MDC streams](image3)
Coding: MDC Lena Example

> Input image

![Input image](image1)

> Output image

![Output image](image2)

> Encoding with 4 MDC streams

![Encoded image](image3)
Coding: MDC Lena Example

> Input image

![Input image](image1.png)

Output image

![Output image](image2.png)

2 streams received

> Encoding with 4 MDC streams

![Encoded image](image3.png)
Coding: MDC Lena Example

> Input image

> Output image

> Encoding with 4 MDC streams
Coding: MDC Lena Example

- Input image

- Output image

- 3 streams received

- Encoding with 4 MDC streams
Coding: MDC Lena Example

> Input image

> Encoding with 4 MDC streams

Output image
Coding: MDC Lena Example

> Input image

[Input image]

Output image

4 streams received

> Encoding with 4 MDC streams
Adaptive Transport Over Multipaths (ATOM)

ATOM aware Application

Encoding Plugins:
- SDC Encoding
- MDC Encoding

Decoding Plugins:
- SDC
- MDC Decoding
- Playout scheduler

ATOM Controller

Path Allocator

Multi-Path Routing

HSA

MMS

Application

Transport

Internet

Network

control

multiple streams

signalling

monitoring

active measurements

Thomas Staub, December 19th, 2007
ATOM Architecture: System Components

> ATOM aware application
 - Examples
 - Video conferencing
 - VoIP
 - ATOM API
 - Available codecs, coding options (→ATOM)
 - Selected encoding, number of streams (←ATOM)
 - Quality feedback (→ATOM)

> History and Statistical Analyser (HSA)
 - Robustness information of individual paths
 - Stability during the last week, days, hours, minutes
 - Assign values to routing table entries
 - Discovery of regularity, periodicity (bandwidth, outages, delays)
ATOM Architecture: System Components

> Monitoring and Measurement System (MMS)
 — Active measurement of network conditions
 — Monitoring of transmission (feedback)
> Multi-path routing
 — including new metrics based on iAWARE
 — informs ATOM controller about available paths
> Path Allocator
 — Allocates the streams to the paths according to ATOM controller
> End-to-end signalling
 — Application legacy signalling
 — Signalling using NSIS (?)
 — Informs destination about used encoding, number of streams
ATOM Architecture: System Components

ATOM Controller

- Gathered control data
 - Available encodings from application
 - Robustness info from HSA
 - Paths available from multi-path routing / HSA
 - Current network conditions from MMS

- Decision on
 - number of paths searched
 - encoding algorithm (MDC or LC)
 - number of streams
 - mapping of streams to paths

- Dynamic adaptation
 - MMS notices significant changes either by active (network probes) or passive measurements at the destination
Next Steps

> Detailed specification of ATOM
> Implementation of ATOM in Omnet++
 — Multi-channel support
 — Multi-path routing
 — Enhanced metrics
 — ATOM components
> Simulations and evaluations (multi-path routing protocols, metrics)
> Evaluations of regularities / periodicities in real world wireless traces
 — RAWDAD crawdad.cs.dartmouth.edu
 — MIT roofnet traces
Conclusions

> Real-time applications in WMNs are challenging

> **ATOM** architecture provides a solution based on
 – Multi-path routing
 – Multi-stream coding
Questions
Holiday Gift Ideas
For the Budget-Conscious Grad Student

- Recycle old lab equipment
 - it’s a what?
 - a multi-channel laser spectrophotography tissue analyzer!

- Put that English degree to good use
 - a collection of your poems.
 - how thoughtful.
 - again.

- Give the gift of Science
 - it’s alkali hydrolized sodium tallowate.
 - uh...
 - i made you soap.

- Let them know you care.
 - “another year of free computer tech support.”
 - you’re welcome.
Adaptive Transport Over Multipaths (ATOM)

References: Multipath Routing

References: Multipath Routing

References: Routing Metrics

>[16] Y. Yang, J. Wang, and R. Kravets, “Designing routing metrics for mesh networks,” in First IEEE Workshop on Wireless Mesh Networks (WiMesh), (Santa Clara, CA, USA), September 26 2005. (MIC)