Energy-Efficient Management of Heterogeneous Wireless Sensor Networks using Multicast Communication

Gerald Wagenknecht
Universität Bern
Agenda

> Introduction
 — Management Scenario
 — Overall Picture of the System

> Management Functionality
 — MARWIS

> Multicast Communication
 — SNOMC

> Heterogeneous Networks

> Conclusion

> Discussion

March 07, 2011
Management Scenario

Energy-Efficient Management of Wireless Sensor Networks using Overlay Multicast

March 07, 2011
Overall Picture of the System

Energy-Efficient Management of Wireless Sensor Networks using Overlay Multicast

March 07, 2011
Management Functionality

> Goals
 — Monitoring, Configuration, Code Update
 — Efficient and Energy-Efficient

> Management Architecture for Wireless Sensor Networks (MARWIS)

> Components
 — Management station
 — WSN Manager on mesh nodes
 — SN Agent on sensor nodes
Management Functionality: User Interface (1)
Management Functionality: User Interface (2)

MARWIS
Management Architecture for Wireless Sensor Networks

Sensor Node sn01:
- Node Info:
 - IP: 10.1.10.101
 - Gateway: 10.1.10.101
 - Platform: TelosB
 - Operating System: Contiki
 - Mesh Node: marwissn01
 - Microcontroller: MSP430
 - Radio Transceiver: CC2420
 - Current Voltage (V): 2.953
 - LED Red: on
 - LED Green: on
 - LED Blue: off

- LEDs:
 - Red
 - Green
 - Blue

-Sensors:
 - Photosynth. Active Radiation (Lux)
 - Total Solar Radiation (Lux)
 - Relative Humidity (%)
 - Temperature (°C)

Sensor Node sn02:
- Node Info:
 - IP: 10.1.10.102
 - Gateway: 10.1.10.102
 - Platform: TelosB
 - Operating System: Contiki
 - Mesh Node: marwissn01
 - Microcontroller: MSP430
 - Radio Transceiver: CC2420
 - Current Voltage (V): 2.529
 - Battery max (mAh): 3300
 - Battery curr (mAh): 2399
 - LED Red: on
 - LED Green: on
 - LED Blue: off

-Sensors:
 - Photosynth. Active Radiation (Lux)
 - Total Solar Radiation (Lux)
 - Relative Humidity (%)
 - Temperature (°C)
Management Functionality: Protocols

> Management Protocols
 — Monitoring Protocol
 — Configuration Protocol
 — Code Update Protocol

> Example: Code Update
 — Transmitting the application to the selected sensor nodes
 — Acknowledge about the success of the update
Multicast Communication

> Goals

— Reliability:
 - Supporting end-to-end reliability
 - Distributing the responsibility for reliability on different protocol layers and avoiding end-to-end retransmissions

— Energy-efficiency
 - To reduce number of transmissions using multicast communication and using broadcast communication on link layer
 - To avoid end-to-end retransmissions using caching mechanisms

— Supporting heterogeneous networks
 - IP-based communication
 - Overlay Multicast
Multicast Communication: SNOMC (1)

- Sensor Node Overlay Multicast (SNOMC) protocol
- Goal: Avoiding redundant unicast connections
- Role of nodes
- Multicast schemes
 - Receiver-driven vs Source-driven
- Overlay Multicast
 - UDP as transport protocol
- Reliability
 - End-to-end reliability using NACKs and closing positive ACKs
 - Caching:
 - Only on source node
 - On branching nodes
 - On every intermediate node
Multicast Communication: SNOMC (2)

> Implemented in OMNeT++
 — Source-driven and receiver-driven
 — 3 caching mechanisms
 — BEAM as MAC protocol with H2HR

> Implemented in Contiki
 — Source-driven
 — 3 caching mechanisms
 — NullMAC as MAC protocol
Multicast Communication: Evaluation (1)

- Goal: Comparing SNOMC with different transport protocols
 - Flooding
 - Multipoint Relaying (MPR)
 - Directed Diffusion
 - Unicast (TCP/UDP)

- ... in both multicast schemes (source-, receiver-driven), using 3 caching mechanisms, and ...

- ... in combination with different MAC protocols
 - NullMAC
 - BEAM
 - X-MAC / ContikiMAC
Multicast Communication: Evaluation (2)

Problem: Comparability between the simulated results and the real-world results

- Different protocol stacks
- Different scenarios
- Operational delays in Contiki not taken into account in OMNeT++
- Missing implementations of “standard” protocols in Contiki (Directed Diffusion, MPR)
Multicast Communication: Evaluation (3)

> Simulated World vs Real-World
> Simulation:
 — 9 nodes, 3 receivers, max 7 hops, BEAM/H2HR
> Real-World:
 — 6 nodes, 3 receivers, max 4 hops, NullMAC
Multicast Communication: Broadcast

> Optimize multicast using broadcast on link layer
 — avoid redundant unicast transmissions on link layer

> Challenge: Reliable Link Layer Broadcast
 — Explicit vs implicit acknowledgement
Multicast Communication: IP Multicast

> IP Multicast
 — No implementation in Contiki

> Scalable Adaptive Multicast (SAM)
 — Research Group of the Internet Research Task Force (IRTF)
 — Draft, no implementation
Heterogeneous Networks

> Goal: Supporting heterogeneous wireless sensor networks
 — TelosB / TmoteSKY
 — MSB
 — BTnodes

> Using wireless mesh nodes

> Management functionality on all types of nodes

> IP-based communication
Heterogeneous Networks: SNOMC

> Supporting Overlay Multicast in heterogeneous WSNs
 — SNOMC in Contiki
 — SNOMC over Wireless Mesh Networks

> Same protocol for different networks
Conclusion

> Management Scenario
> Overall Picture of the System

> MARWIS

> Multicast Communication
 — SNOMC
 — Evaluation Problems
 — Broadcast
 — IP Multicast

> Heterogeneous Networks

March 07, 2011
Discussion