SEMINAR RECHNERNETZE UND VERTEILTE SYSTEME

PEER- TO- PEER MEDIA STREAMING

Ildefonso López Marín
University Jaen (Spain)
Overview

> Introduction
 — Definition of streaming
 — Components
 — Services

> P2P streaming examples and implementations
 — Multiparty videoconferencing systems [1]
 — PULSE: P2P Live Streaming System [3]

> Improving P2P streaming
 — Network coding in P2P streaming [4]
 — Maximizing Tree Bandwidth [5]

> Conclusion & Questions
Introduction

> Definition of streaming
 — Strategy for distributing multimedia content over the Internet directly on a website or with a dedicated client program

> Components
 — Codecs
 — Protocols
 - UDP
 - RTSP, RTP, RTCP
 - Unicast/Multicast
 — Content Distribution Network: e.g. P2P

> Services
 — Audio: Radio, Podcasts, …
 — Video: TV, VoD, Conferencing, …
P2P Streaming Examples and Implementations

> Multiparty Videoconferencing System [1]

— Desktop videoconferencing
 - Web conferencing
 - No dedicated ISDN lines / runs on normal PCs
 - Increasing need for multiparty videoconferencing

— Challenges:
 - Synchronous delivery of high-volume media content
 - Heterogeneous network conditions
 - Addressing and connectivity
 - Real-time requirements
P2P Streaming Examples and Implementations

- Multiparty Videoconferencing System [1]
 - (1) System Architecture:
 - a) Server implementation:
 - NAT traversal
 - Session setup
 - b) Client implementation:
 - Transport
 - Connection
 - Routing
 - Member
 - Session
P2P Streaming Examples and Implementations

- Multiparty Videoconferencing System [1]
 - (2): Application-Level Multicast Routing
 - a) Source-specific trees have better end-to-end performance than shared trees
 - b) Distributed DV (Distance Vector) protocol cannot make use of bandwidth resource as intelligently
 - c) Incorporating IP Multicast into a ALM scheme can greatly improve end-to-end performance and network resource usage
Design and Evaluation of a P2P IPTV System for Heterogeneous Networks [2]

Description P2P IPTV:

- What is?
 - Internet Protocol Tele Vision, System where a digital television service is delivered using Internet Protocol over a network infrastructure.

- Architecture of IPTV
 - Centralized Architecture
 - Distributed Architecture

- Advantages
 - More content and functionality; Interactivity; VOD; IPTV based Converged Services

- Limitations
 - It is sensitive to packet loss and delays
P2P Streaming Examples and Implementations

> Design and Evaluation of a P2P IPTV System for Heterogeneous Networks [2]

— NTUStreaming, three key components:

 1) Partnership formation
 TYPHOON

 2) Robust video coding
 MDC-STHI

 3) Video segment request
 Coded-aware scheduling

source [2]
P2P Streaming Examples and Implementations

> Design and Evaluation of a P2P IPTV System for Heterogeneous Networks [2]
 — Multiple Description Code Evaluation:

STHI
P2P Streaming Examples and Implementations

> Design and Evaluation of a P2P IPTV System for Heterogeneous Networks [2]
 — Multiple Description Coding Evaluation:

STHI
P2P Streaming Examples and Implementations

> PULSE: P2P Live Streaming System [3]

— Definition: Pulse is an unstructured p2p system for live streaming. It is data-driven, receiver-based and it promotes node cooperation through the use of incentives.

— The main goals of Pulse are:

 - Scalability to distribute the content to a large set of peers
 - Flexibility to accommodate heterogeneous peers
 - Robustness to behave well in presence of transient nodes
P2P Streaming Examples and Implementations

> PULSE: P2P Live Streaming System [3]

— Media Streaming:
 - The stream is divided in a series of pieces called *chunks*
 - Every chunk is characterized by a timestamp
 - A FEC coding mechanism is applied to chunks

— The lag reference system:
 - A chunk's lag is given by the difference between its timestamp and the timestamp of the chunk currently being broadcast by the source
 - The position of a node inside the system is given by the lag value of the chunk at the beginning of its sliding window
P2P Streaming Examples and Implementations

- **PULSE: P2P Live Streaming System [3]**
 - Mesh + Clustering + Targeted Altruism = Locality Awareness!

Source

Peer P

Upload-Rich Peers

Upload-Poor Peers

Node Lag

Buffer Range (Trading Window)

Older Data Chunks (Used for Altruism)

Age Limit (P Discards Chunks)

May 14, 2008
Network coding in P2P Streaming [4]

- Improves the performance of both peer-to-peer (P2P) and wireless network
- Allows coding at intermediate nodes
- Improves network throughput of multicast sessions
- Reduces the redundancy of bandwidth usage
- Improve resilience to network dynamic
- Is beneficial for large-scale P2P content distribution
- Treats all blocks are equally (with network coding)
Improving P2P Streaming

- Network coding in P2P Streaming [4]
 - Lava: Experimental Testbed for Network Coding in live P2P
 - Gauss-Jordan elimination
 - Architectural design implementation based P2P live streaming protocol, called Vanilla

source [4]
Network coding in P2P Streaming [4]

— Evaluation of Network coding in P2P Streaming with several important metrics:
 - Playback skips:
 Percentage of segments skipped during playback
 - Bandwidth redundancy:
 Percentage of discarded segments
 - Buffering levels:
 Percentage of completely received segments in the playback buffer on each peer

— Concluding remarks:
 - Advantages in P2P Live streaming when peers are volatile and dynamic
Maximizing Tree Bandwidth [5]

How to build a high-bandwidth overlay tree based on underlay information?

- Via two types of tree construction problems on a router-level topology:

 (1) Maximum Bandwidth Multicast Tree

 (2) Minimum Stress Multicast Tree

- Note: To ensure good streaming quality at a host, the incoming bandwidth of the host should be higher than or equal to the streaming bit rate.
> Maximum Bandwidth Multicast Tree [5]

If link bandwidth information is available, a high-bandwidth overlay tree instead of a minimum-stress tree can be constructed.

When MBMT is used:

- Similarly, each time the server randomly adds an adjacent path into the current tree and evaluates the tree bandwidth of the new tree.
- Finally, the server adds the path that leads to maximum tree bandwidth of the new tree.
> Minimum Stress Multicast Tree [5]

In our network model, the underlay topology consists of a set of routers, which are inter-connected by physical links.

When MSMT is used:
- The server checks the paths adjacent to the new host in the overlay path set
- Each time, it adds one path to the current tree, and evaluates the stress of the new tree
- The server then repeats this procedure for a certain number of time and each time checks one path
P2P Streaming examples and implementation:

- **Multiparty Videoconferencing System**: Solution to the challenge for synchronous delivery of high-volume media content.
- **Design and Evaluation of a P2P IPTV**: NTUStreaming is a system that integrates overlay networking and video coding for optimal user experience. This obtains a optimal result in the evaluation.
- **PULSE:P2P live Streaming System**: is an unstructured system designed to support live Streaming.

Improving P2P Streaming:

- **Network Coding in P2P Streaming**: Reduce the redundancy of bandwidth usage, improves resilience to network dynamic, also is beneficial for large-scale P2P content distribution.
- **Maximizing Tree Bandwidth**: It built the high-bandwidth via two types of tree construction problems, MBMT and MSMT.
References

> [1] Chong Luo, Member, IEEE, Wei Wang, Jian Tang, Member, IEEE, Jun Sun, Member, IEEE, and Jiang Li, Senior Member, IEEE, “A Multiparty Videoconferencing System Over an Application-Level Multicast Protocol”.

> [5] Xing Jin, Student Member, IEEE, W.-P. Ken Yiu, Student Member, IEEE, S.-H. Gary Chan, Senior Member, IEEE, and Yajun Wang, “On Maximizing Tree Bandwidth for Topology-Aware Peer-to-Peer Streaming”
Questions?